Subpopulation Treatment Effect Pattern Plot (stepp) Method with R and Stata
Journal of data science(2022)
摘要
We introduce the stepp packages for R and Stata that implement the subpopulation treatment effect pattern plot (STEPP) method. STEPP is a nonparametric graphical tool aimed at examining possible heterogeneous treatment effects in subpopulations defined on a continuous covariate or composite score. More pecifically, STEPP considers overlapping subpopulations defined with respect to a continuous covariate (or risk index) and it estimates a treatment effect for each subpopulation. It also produces confidence regions and tests for treatment effect heterogeneity among the subpopulations. The original method has been extended in different directions such as different survival contexts, outcome types, or more efficient procedures for identifying the overlapping subpopulations. In this paper, we also introduce a novel method to determine the number of subjects within the subpopulations by minimizing the variability of the sizes of the subpopulations generated by a specific parameter combination. We illustrate the packages using both synthetic data and publicly available data sets. The most intensive computations in R are implemented in Fortran, while the Stata version exploits the powerful Mata language.
更多查看译文
关键词
Treatment Effects
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn