Multimodal Deep Learning Model on Interim [18F]FDG PET/CT for Predicting Primary Treatment Failure in Diffuse Large B-cell Lymphoma
EUROPEAN RADIOLOGY(2023)
摘要
Objectives The prediction of primary treatment failure (PTF) is necessary for patients with diffuse large B-cell lymphoma (DLBCL) since it serves as a prominent means for improving front-line outcomes. Using interim 18 F-fluoro-2-deoxyglucose ([ 18 F]FDG) positron emission tomography/computed tomography (PET/CT) imaging data, we aimed to construct multimodal deep learning (MDL) models to predict possible PTF in low-risk DLBCL. Methods Initially, 205 DLBCL patients undergoing interim [ 18 F]FDG PET/CT scans and the front-line standard of care were included in the primary dataset for model development. Then, 44 other patients were included in the external dataset for generalization evaluation. Based on the powerful backbone of the Conv-LSTM network, we incorporated five different multimodal fusion strategies (pixel intermixing, separate channel, separate branch, quantitative weighting, and hybrid learning) to make full use of PET/CT features and built five corresponding MDL models. Moreover, we found the best model, that is, the hybrid learning model, and optimized it by integrating the contrastive training objective to further improve its prediction performance. Results The final model with contrastive objective optimization, named the contrastive hybrid learning model, performed best, with an accuracy of 91.22% and an area under the receiver operating characteristic curve (AUC) of 0.926, in the primary dataset. In the external dataset, its accuracy and AUC remained at 88.64% and 0.925, respectively, indicating its good generalization ability. Conclusions The proposed model achieved good performance, validated the predictive value of interim PET/CT, and holds promise for directing individualized clinical treatment. Key Points • The proposed multimodal models achieved accurate prediction of primary treatment failure in DLBCL patients. • Using an appropriate feature-level fusion strategy can make the same class close to each other regardless of the modal heterogeneity of the data source domain and positively impact the prediction performance. • Deep learning validated the predictive value of interim PET/CT in a way that exceeded human capabilities.
更多查看译文
关键词
Lymphoma,Positron emission tomography/computed tomography,Treatment failure,Deep learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn