Machine Learning Concept in De-Spiking Process for Nuclear Resonant Vibrational Spectra – Automation Using No External Parameter
Vibrational Spectroscopy(2022)
摘要
Nuclear resonant vibrational spectroscopy (NRVS) is a relatively new spectroscopic method which measures site-specific vibrational information and is useful in many research areas. It has an almost zero background and is suitable for measuring weak signals but needs a lot of scans to complete one real spectrum. Due to various reasons, some NRVS scans have occasional spike(s), which can introduce fake peak(s) when the averaged spectrum is converted into partial vibrational density of state (PVDOS) and can mislead the deduction of the corresponding structural information from it. For better use of the NRVS spectra with occasional spikes, people have to identify and smooth the sporadic spiky points while leaving all other points untouched. In this publication, we used the concept of machine learning and created a fully automated procedure for screening and smoothing the occasional spiky points in NRVS spectra. The procedure uses the statistical information obtained from the particular NRVS scan to be processed itself and needs neither an external parameter nor the information from other NRVS scans. A corresponding R subroutine code is also presented to batch process large numbers of measured NRVS scans. This work is the first attempt toward organizing an automatic de-spiking process for NRVS scans without using an external parameter.
更多查看译文
关键词
Nuclear resonant vibrational spectroscopy,Machine learning concept,De-spiking,Automation,Automation with no external parameter
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn