Simulation-Aided Handover Prediction from Video Using Recurrent Image-to-Motion Networks
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS(2024)
摘要
Recent advances in deep neural networks have opened up new possibilities for visuomotor robot learning. In the context of human-robot or robot-robot collaboration, such networks can be trained to predict future poses and this information can be used to improve the dynamics of cooperative tasks. This is important, both in terms of realizing various cooperative behaviors, and for ensuring safety. In this article, we propose a recurrent neural architecture, capable of transforming variable-length input motion videos into a set of parameters describing a robot trajectory, where predictions can be made after receiving only a few frames. A simulation environment is utilized to expand the training database and to improve generalization capability of the network. The resulting architecture demonstrates good accuracy when predicting handover trajectories, with models trained on synthetic and real data showing better performance than when trained on real or simulated data only. The computed trajectories enable the execution of handover tasks with uncalibrated robots, which was verified in an experiment with two real robots.
更多查看译文
关键词
Trajectory,Robots,Handover,Task analysis,Receivers,Training,Computational modeling,Dynamic movement primitives (DMPs),handover,machine vision,recurrent neural networks (RNNs),robot learning,simulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn