Chronic Cold Exposure Leads to Daytime Preference in the Circadian Expression of Hepatic Metabolic Genes.
Frontiers in Physiology(2022)
摘要
Circadian control allows organisms to anticipate and adapt to environmental changes through changes in physiology and behavior. The circadian system timing is entrained by cues, such as light, food, and temperature. An ambient temperature dramatically impacts the sleep-wake cycle and metabolic rhythmicity. As endotherms, mammals rely on tissues such as the liver to provide fuel for thermogenesis to maintain body temperature. The adaptive response of the circadian rhythm of liver metabolism to chronic cold exposure remains largely unexplored. Here, we investigated the circadian rhythm adaptation of hepatic metabolism in response to environmental cold stress using a mouse model of chronic cold exposure. We analyzed metabolites and transcripts of mouse livers at 24 h and found that long-term low-temperature exposure resulted in a synergistic and phase synchronization of transcriptional rhythms of many genes associated with metabolic pathways. Notably, transcription peaked in the early light phase when the body temperature was relatively low. Our results suggest that chronic cold does not alter the rhythmic expression of essential core clock genes in the liver, so the rewiring of clock control gene expression is another mechanism that optimizes the circadian rhythm of liver metabolism to meet the energy requirements of animal thermogenesis.
更多查看译文
关键词
circadian rhythm,metabolism,liver,chronic cold,adaption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn