Comparison of Multiobjective Optimization Methods for the LCLS-II Photoinjector

COMPUTER PHYSICS COMMUNICATIONS(2023)

引用 2|浏览20
摘要
Particle accelerators are among some of the largest science experiments in the world and can consist of thousands of components with a wide variety of input ranges. These systems can easily become unwieldy optimization problems during design and operations studies. Starting in the early 2000s, searching for better beam dynamics configurations became synonymous with heuristic optimization methods in the accelerator physics community. Genetic algorithms and particle swarm optimization are currently the most widely used. These algorithms can take thousands of simulation evaluations to find optimal solutions for one machine prototype. For large facilities such as the Linac Coherent Light Source (LCLS) and others, this equates to a limited exploration of many possible design configurations. In this paper, the LCLS-II photoinjector is optimized with three optimization algorithms. All optimizations were started from both a uniform random and Latin hypercube sample. In all cases, the optimizations started from Latin hypercube samples outperformed optimizations started from uniform samples. All three algorithms were able to optimize the photoinjector, with the model-based methods approximating the Pareto front in fewer simulation evaluations. This work, in combination with previous optimization observations, indicates objective penalties have a strong impact on the efficiency of such methods. In general, we recommend heuristic methods for initial optimizations and model-based methods when information about the objective space is available.
更多
查看译文
关键词
Particle accelerators,Photoinjectors,Optimization,Beam dynamics,libEnsemble
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn