Incremental Information Gain Mining of Temporal Relational Streams.

CoRR(2022)

引用 0|浏览11
摘要
This paper studies the problem of mining for data values with high information gain in relational tables. High information gain can help data analysts and secondary data mining algorithms gain insights into strong statistical dependencies and causality relationship between key metrics. In this paper, we will study the problem of high information gain identification for scenarios involving temporal relations where new records are added continuously to the relations. We show that information gain can be efficiently maintained in an incremental fashion, making it possible to monitor continuously high information gain values.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn