A Novel Pseudogene Methylation Signature to Predict Temozolomide Outcome in Non-G-CIMP Glioblastomas
Journal of oncology(2022)
摘要
Objective. Alterations in the methylation state of pseudogenes may serve as clinically useful biomarkers of glioblastomas (GBMs) that do not have glioma-CpG island methylator phenotype (G-CIMP). Methods. Non-G-CIMP GBM datasets were included for evaluation, and a RISK-score signature was determined from the methylation state of pseudogene loci. Both bioinformatic and experimental analyses were performed for biological validation. Results. By integrating clinical information with DNA methylation microarray data, we screened a panel of eight CpGs from discovery cohorts of non-G-CIMP GBMs. Each CpG could accurately and independently predict the prognosis of patients under a treatment regime that combined radiotherapy (RT) and temozolomide (TMZ). The 8-CpG signature appeared to show opposite prognostic correlations between patients treated with RT/TMZ and those treated with RT monotherapy. The analyses further indicated that this signature had predictive value for TMZ efficacy because different survival benefits between RT/TMZ and RT therapies were observed in each risk subgroup. The incorporation of other risk factors, such as age and O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status, with our pseudogene methylation signature could provide precise risk classification. In vitro experimental data revealed that two locus-specific pseudogenes (ZNF767P and CLEC4GP1) may modulate TMZ resistance via distinct mechanisms in GBM cells. Conclusion. The biologically and clinically relevant RISK-score signature, based on pseudogene methylation loci, may offer information for predicting TMZ responses of non-G-CIMP GBMs, that is independent from, but complementary to, MGMT-based approaches.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn