Long-Term Stability of Pickering Nanoemulsions Prepared Using Diblock Copolymer Nanoparticles: Effect of Nanoparticle Core Crosslinking, Oil Type, and the Role Played by Excess Copolymers
Langmuir the ACS journal of surfaces and colloids(2022)
摘要
A poly(N,N'-dimethylacrylamide) (PDMAC) precursor is chain-extended via reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of diacetone acrylamide (PDAAM) to produce PDMAC77-PDAAM40 spherical nanoparticles. Post-polymerization core-crosslinking of such nanoparticles was performed at 20 °C, and the resulting covalently stabilized nanoparticles survive exposure to methanol. The linear and core-crosslinked nanoparticles were subjected to high-shear homogenization in turn in the presence of n-dodecane to form macroemulsions. Subsequent processing of these macroemulsions via high-pressure microfluidization produced nanoemulsions. When using the core crosslinked nanoparticles, the droplet diameter was strongly dependent on the copolymer concentration. This indicates that such nanoparticles remain intact under the processing conditions, leading to formation of genuine Pickering nanoemulsions with a z-average diameter of 244 ± 60 nm. In contrast, the linear nanoparticles undergo disassembly to afford molecularly dissolved diblock copolymer chains, which stabilize oil droplets of 170 ± 59 nm diameter. The long-term stability of these two types of n-dodecane-in-water nanoemulsions with respect to Ostwald ripening was examined using analytical centrifugation. When prepared at the same copolymer concentration, Pickering nanoemulsions stabilized by core-crosslinked nanoparticles proved to be significantly more stable than the nanoemulsion stabilized by the amphiphilic PDMAC77-PDAAM40 chains. Moreover, higher copolymer concentrations led to a significantly faster rate of droplet growth. This is attributed to excess copolymer facilitating the diffusion of n-dodecane through the aqueous phase. Finally, analytical centrifugation is used to assess the long-term stability of the analogous squalane-in-water nanoemulsions. These systems are much more stable than the corresponding n-dodecane-in-water nanoemulsions, regardless of whether the copolymer is adsorbed as sterically stabilized nanoparticles or surface-active chains.
更多查看译文
关键词
Pickering Emulsions,Nanoemulsions,Microemulsions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn