Comparison of Effective Active Spreading Designs for in Situ Groundwater Remediation

World Environmental and Water Resources Congress 2022(2022)

引用 0|浏览10
摘要
During in situ remediation of contaminated groundwater, a chemical or biological amendment is introduced into the contaminant plume to react with the contaminant. Reactions occur only where the amendment and contaminant are in contact with each other, so active spreading has been proposed to increase the contact area between the two reactants. With active spreading, wells are installed in the vicinity of the contaminant plume and are operated in a pre-defined sequence of injections and extractions to create a spatio-temporally varying flow field that changes the shapes of the reactant plumes, generally leading to an increase in contact area and therefore an increase in reaction. The design of the active spreading system depends on the reaction chemistry of the contaminant. This study considers active spreading scenarios for contaminants with three different types of reactions: (1) non-sorbing aqueous contaminant, A, that degrades irreversibly to a benign chemical, C, through reaction with a non-sorbing aqueous amendment, B; (2) sorbing contaminant, A, that degrades irreversibly to a benign chemical, C, through reaction with a non-sorbing aqueous amendment, B, where sorption of A is independent of the concentration of B; and (3) contaminant, A, that exhibits reversible equilibrium surface complexation with concentrations in the mobile and immobile phases dependent on the concentration of the amendment, B. We compare the active spreading strategies for these three types of reactions and identify the characteristics of each strategy that lead to enhanced removal of groundwater contaminants.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn