Estrogen Rescues Masculinization of Genetically Female Medaka by Exposure to Cortisol or High Temperature

Molecular Reproduction and Development(2012)

引用 81|浏览1
摘要
Medaka (Oryzias latipes) is a teleost fish with an XX/XY sex determination system. Recently, it was reported that XX medaka can be sex‐reversed into phenotypic males by exposure to high water temperature (HT) during gonadal sex differentiation, possibly by elevation of cortisol, the major glucocorticoid produced by the interrenal cells in teleosts. Yet, it remains unclear how the elevation of cortisol levels by HT causes female‐to‐male sex reversal. This paper reports that exposure to cortisol or HT after hatching inhibited both the proliferation of female‐type germ cells and the expression of ovarian‐type aromatase (cyp19a1), which encodes a steroidogenic enzyme responsible for the conversion of androgens to estrogens, and induced the expression of gonadal soma‐derived growth factor (gsdf) in XX gonads during gonadal sex differentiation. In contrast, exposure to either cortisol or HT in combination with 17β‐estradiol (E2) did not produce these effects. Moreover, E2 completely rescued cortisol‐ and HT‐induced masculinization of XX medaka. These results strongly suggest that cortisol and HT cause female‐to‐male sex reversal in medaka by suppression of cyp19a1 expression, with a resultant inhibition of estrogen biosynthesis. This mechanism may be common among animals with temperature‐dependent sex determination. Mol. Reprod. Dev. 79: 719–726, 2012. © 2012 Wiley Periodicals, Inc.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn