In-Memory Mathematical Operations with Spin-Orbit Torque Devices.
Advanced Science(2022)
摘要
AbstractAnalog arithmetic operations are the most fundamental mathematical operations used in image and signal processing as well as artificial intelligence (AI). In‐memory computing (IMC) offers a high performance and energy‐efficient computing paradigm. To date, in‐memory analog arithmetic operations with emerging nonvolatile devices are usually implemented using discrete components, which limits the scalability and blocks large scale integration. Here, a prototypical implementation of in‐memory analog arithmetic operations (summation, subtraction and multiplication) is experimentally demonstrated, based on in‐memory electrical current sensing units using spin‐orbit torque (SOT) devices. The proposed structures for analog arithmetic operations are smaller than the state‐of‐the‐art complementary metal oxide semiconductor (CMOS) counterparts by several orders of magnitude. Moreover, data to be processed and computing results can be locally stored, or the analog computing can be done in the nonvolatile SOT devices, which are exploited to experimentally implement the image edge detection and signal amplitude modulation with a simple structure. Furthermore, an artificial neural network (ANN) with SOT devices based synapses is constructed to realize pattern recognition with high accuracy of ≈95%.
更多查看译文
关键词
analog mathematical computing,image and signal processing,in-memory computing,neural network,spin-orbit torque
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn