Nonlinear Harmonics of a Seeded Free-Electron Laser As a Coherent and Ultrafast Probe to Investigate Matter at the Water Window and Beyond
Physical review A/Physical review, A(2022)
摘要
The advent of free-electron lasers (FELs) in the soft- and hard-x-ray spectral regions has introduced the possibility to probe electronic, magnetic, and structural dynamics, in both diluted and condensed matter samples, with femtosecond time resolution. In particular, FELs have strongly enhanced the capabilities of several analytical techniques, which have taken advantage of the high degree of transverse coherence provided. Free-electron lasers based on the harmonic up-conversion of an external coherent source (seed) are characterized also by a high degree of longitudinal coherence, since electrons inherit the coherence properties of the seed. For the state of the art, the shortest wavelength delivered to user experiments by an externally seeded FEL light source is about 4 nm. In this paper we demonstrate that pulses with a high longitudinal degree of coherence (first and second order) covering the water window and with photon energy extending up to 790 eV can be generated by exploiting the so-called nonlinear harmonic regime, which allows generation of radiation at harmonics of the resonant FEL wavelength. In order to show the suitability of the nonlinear harmonics generated by a seeded FEL for research in the water window and beyond, we report the results of two proof-of-principle experiments: one measuring the oxygen K-edge absorption in water (similar to 530 eV) and the other analyzing the spin dynamics of Fe and Co through magnetic small-angle x-ray scattering at their L edges (707 and 780 eV, respectively).
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn