Dynamic Brillouin Cooling for Continuous Optomechanical Systems
MATERIALS FOR QUANTUM TECHNOLOGY(2023)
摘要
Up until now, ground state cooling using optomechanical interaction is realized in the regime where optical dissipation is higher than mechanical dissipation. Here, we demonstrate that optomechanical ground state cooling in a continuous optomechanical system is possible by using backward Brillouin scattering while mechanical dissipation exceeds optical dissipation which is the common case in optical waveguides. The cooling is achieved in an anti-Stokes backward Brillouin process by modulating the intensity of the optomechanical coupling via a pulsed pump to suppress heating processes in the strong coupling regime. With such dynamic modulation, a significant cooling factor can be achieved, which can be several orders of magnitude lower than for the steady-state case. This modulation scheme can also be applied to Brillouin cooling generated by forward intermodal Brillouin scattering.
更多查看译文
关键词
mechanical cooling,Brillouin scattering,quantum optics,optomechanics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn