The Effects of Serum Albumin Pre-Adsorption of Nanoparticles on Protein Corona and Membrane Interaction: A Molecular Simulation Study

JOURNAL OF MOLECULAR BIOLOGY(2023)

引用 2|浏览36
摘要
As a platform to deliver imaging and therapeutic agents to targeted sites in vivo, nanoparticles (NPs) have widespread applications in diagnosis and treatment of cancer. However, the poor in vivo delivery efficiency of nanoparticles limits its potential for further application. Once enter the physiological environment, nanoparticles immediately interact with proteins and form protein corona, which changes the physicochemical properties of nanoparticle surface and further affects their transport. In this study, we performed molecular dynamics simulations to study the adsorption mechanism of nanoparticles with various surface modifications and different proteins (e.g., human serum albumin, complement protein C3b), and their interactions with cell membrane. The results show that protein human serum albumin prefers to interact with hydrophobic and positively charged nanoparticles, while the protein C3b prefers the hydrophobic and charged nanoparticles. The pre-adsorption of human serum albumin on the nanoparticle surface obviously decreases the interaction of nanoparticle with C3b. Furthermore, the high amount of protein pre-adsorption could decrease the probability of nanoparticle-membrane interaction. These results indicate that appropriate modification of nanoparticles with protein provides nanoparticles with better capability of targeting, which could be used to guide nanoparticle design and improve transport efficiency.
更多
查看译文
关键词
nanoparticles,protein corona,pre-adsorption,nanoparticle-membrane interaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn