Probing Low-Frequency Charge Noise in Few-Electron CMOS Quantum Dots
PHYSICAL REVIEW APPLIED(2023)
摘要
Charge noise is one of the main sources of environmental decoherence for spin qubits in silicon, presenting a major obstacle in the path towards highly scalable and reproducible qubit fabrication. Here we demonstrate in-depth characterization of the charge noise environment experienced by a quantum dot in a CMOS-fabricated silicon nanowire. We probe the charge noise for different quantum dot configurations, finding that it is possible to tune the charge noise over two orders of magnitude, ranging from 1 ueV^2 to 100 ueV^2. In particular, we show that the top interface and the reservoirs are the main sources of charge noise and their effect can be mitigated by controlling the quantum dot extension. Additionally, we demonstrate a novel method for the measurement of the charge noise experienced by a quantum dot in the few electron regime. We measure a comparatively higher charge noise value of 40 ueV^2 at the first electron, and demonstrate that the charge noise is highly dependent on the electron occupancy of the quantum dot.
更多查看译文
关键词
Semiconductor Quantum Dots,CMOS Scaling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn