Bi‐polaron Transport and Magnetic Field Induced Pauli Spin Blockade in Redox‐Active Molecular Junctions

Angewandte Chemie(2022)

引用 1|浏览10
摘要
We report the bi-polaron transport and magnetic field induced Pauli spin-blockade in solid-state molecular junctions (MJs) evidenced by a positive magnetoresistance (MR). The junction was made of thin layers of redox-active ruthenium polypyridyl-oligomers Ru(tpy)2 sandwiched between conducting amorphous carbon (a-C) electrodes. The redox-active Ru(tpy)2 molecule, which enables small polaron and deep traps in the charge transport of the Ru(tpy)2 MJ as revealed by the temperature-dependent current-voltage response, leads to the formation of the bi-polaron and magnetic field induced Pauli spin blockade, resulting into the MR. At the meantime, the reliable and controllable device performance renders a rigid thickness-dependent MR evolution. The bi-polaron transport revealed in our study underscores the importance of the multi-particle transport by molecular design in MJs and laid the foundation for magnetic-electronic function in molecular-scale devices.
更多
查看译文
关键词
Electron Transport,Magnetic Properties,Molecular Devices,Molecular Electronics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn