Compressive-Strain-Facilitated Fast Oxygen Migration with Reversible Topotactic Transformation in La0.5Sr0.5CoOx Via All-Solid-State Electrolyte Gating
ACS Nano(2022)
摘要
Modifying the crystal structure and corresponding functional properties of complex oxides by regulating their oxygen content has promising applications in energy conversion and chemical looping, where controlling oxygen migration plays an important role. Therefore, finding an efficacious and feasible method to facilitate oxygen migration has become a critical requirement for practical applications. Here, we report a compressive-strain-facilitated oxygen migration with reversible topotactic phase transformation (RTPT) in La0.5Sr0.5CoOx films based on all-solid-state electrolyte gating modulation. With the lattice strain changing from tensile to compressive strain, significant reductions in modulation duration (∼72%) and threshold voltage (∼70%) for the RTPT were observed, indicating great promotion of RTPT by compressive strain. Density functional theory calculations verify that such compressive-strain-facilitated efficient RTPT comes from significant reduction of the oxygen migration barrier in compressive-strained films. Further, ac-STEM, EELS, and sXAS investigations reveal that varying strain from tensile to compressive enhances the Co 3d band filling, thereby suppressing the Co-O hybrid bond in oxygen vacancy channels, elucidating the micro-origin of such compressive-strain-facilitated oxygen migration. Our work suggests that controlling electronic orbital occupation of Co ions in oxygen vacancy channels may help facilitate oxygen migration, providing valuable insights and practical guidance for achieving highly efficient oxygen-migration-related chemical looping and energy conversion with complex oxides.
更多查看译文
关键词
compressive-strain-facilitated oxygen migration,all-solid-state gating modulation,topotactic phase transformation,Co-O hybrid bond,oxygen vacuum channel
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn