MDFN: Mask Deep Fusion Network for Visible and Infrared Image Fusion Without Reference Ground-Truth
EXPERT SYSTEMS WITH APPLICATIONS(2023)
摘要
A single infrared image or visible image cannot clearly present texture details and infrared information of the scene in poor illumination, bad weather, or other complex conditions. Thus, it is necessary to fuse the infrared and visible images into one image. In this paper, we propose a novel deep fusion architecture for fusing visible and infrared images without any reference ground-truth. Different from existing deep image fusion methods which directly output the fused images, a weight score corresponding to each pixel is estimated by our network to determine the contributions of two source images. This strategy transfers the valuable information in source images to the fused image. Considering the salient thermal radiation information in the infrared image, a mask of the infrared image is generated and used to preserve valuable contents in the infrared and visible images for the fused image. Furthermore, a hybrid loss is designed to make the fused image consistent with two source images. On account of the weight estimation, the mask strategy, and the hybrid loss, the images fused by our proposed method jointly maintain the thermal radiation and texture details, achieving state-of-the-art performance compared with existing fusion approaches. Our code is publicly available at https://github.com/NlCxg/MDFN.
更多查看译文
关键词
Image fusion,Mask strategy,Deep learning,Weight score estimation,Visible and infrared images
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn