CIKQA: Learning Commonsense Inference with a Unified Knowledge-in-the-loop QA Paradigm
17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023(2023)
摘要
Recently, the community has achieved substantial progress on many commonsense reasoning benchmarks. However, it is still unclear what is learned from the training process: the knowledge, inference capability, or both? We argue that due to the large scale of commonsense knowledge, it is infeasible to annotate a large enough training set for each task to cover all commonsense for learning. Thus we should separate the commonsense knowledge acquisition and inference over commonsense knowledge as two separate tasks. In this work, we focus on investigating models' commonsense inference capabilities from two perspectives: (1) Whether models can know if the knowledge they have is enough to solve the task; (2) Whether models can develop commonsense inference capabilities that generalize across commonsense tasks. We first align commonsense tasks with relevant knowledge from commonsense knowledge bases and ask humans to annotate whether the knowledge is enough or not. Then, we convert different commonsense tasks into a unified question answering format to evaluate models' generalization capabilities. We name the benchmark as Commonsense Inference with Knowledge-in-the-loop Question Answering (CIKQA).
更多查看译文
关键词
Reinforcement Learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn