A 177 TOPS/W, Capacitor-based In-Memory Computing SRAM Macro with Stepwise-Charging/Discharging DACs and Sparsity-Optimized Bitcells for 4-Bit Deep Convolutional Neural Networks.

IEEE Custom Integrated Circuits Conference (CICC)(2022)

引用 10|浏览15
摘要
Capacitor-based in-memory computing (IMC) SRAM has recently gained significant attention as it achieves high energy-efficiency for deep convolutional neural networks (DCNN) and robustness against PVT variations [1], [3], [7], [8]. To further improve energy-efficiency and robustness, we identify two places of bottleneck in prior capacitive IMC works, namely (i) input drivers (or digital-to-analog converters, DACs) which charge and discharge various capacitors, and (ii) analog-to-digital converters (ADCs) which convert analog voltage/current signals into digital values.
更多
查看译文
关键词
SRAM macro,DACs,sparsity-optimized bitcells,4-bit deep convolutional neural networks,capacitor-based in-memory computing,high energy-efficiency,PVT variations,digital-to-analog converters,analog-to-digital converters,analog voltage-current signals
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn