A Faster k-means++ Algorithm
CoRR(2022)
摘要
k-means++ is an important algorithm for choosing initial cluster centers
for the k-means clustering algorithm. In this work, we present a new
algorithm that can solve the k-means++ problem with nearly optimal running
time. Given n data points in ℝ^d, the current state-of-the-art
algorithm runs in O(k ) iterations, and each iteration takes
O(nd k) time. The overall running time is thus O(n d
k^2). We propose a new algorithm FastKmeans++ that only takes in
O(nd + nk^2) time, in total.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn