An Ultrahigh Linear Sensitive Temperature Sensor Based on PANI:Graphene and PDMS Hybrid with Negative Temperature Compensation
ACS NANO(2022)
摘要
The detection of human body temperature is one of the important indicators to reflect the physical condition. In order to accurately judge the state of the human body, a high-performance temperature sensor with fast response, high sensitivity, and good linearity characteristics is urgently needed. In this paper, the positive temperature characteristics of graphene-polydimethylsiloxane (PDMS) composite with high sensitivity were studied. Besides, doping polyaniline (PANI) with special negative temperature characteristics as the temperature compensation of the composite finally creatively solved the problem of sensor nonlinearity from the material level. Thus, the PANI:graphene and PDMS hybrid temperature sensor with extraordinary linearity and high sensitivity is realized by establishing the space-gap model and mathematical theoretical analysis. The prepared sensor exhibits high sensitivity (1.60%/degrees C), linearity (R-2 = 0.99), accuracy (0.3 degrees C), and time response (0.7 s) in the temperature sensing range of 25-40 degrees C. Based on this, the fabricated temperature sensor can combine with the read-out circuit and filter circuit with a high-precision analog digital converter (ADC) to monitor real-time skin temperature, ambient temperature, and respiratory rate, et al. This high-performance temperature sensor reveals its great potential in electronic skin, disease diagnosis, medical monitoring, and other fields.
更多查看译文
关键词
temperature sensor, graphene, polyaniline, read-out circuit, real-time monitoring
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn