Interactive Concept Bottleneck Models
THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 5(2023)
摘要
Concept bottleneck models (CBMs) are interpretable neural networks that first predict labels for human-interpretable concepts relevant to the prediction task, and then predict the final label based on the concept label predictions. We extend CBMs to interactive prediction settings where the model can query a human collaborator for the label to some concepts. We develop an interaction policy that, at prediction time, chooses which concepts to request a label for so as to maximally improve the final prediction. We demonstrate that a simple policy combining concept prediction uncertainty and influence of the concept on the final prediction achieves strong performance and outperforms static approaches as well as active feature acquisition methods proposed in the literature. We show that the interactive CBM can achieve accuracy gains of 5-10% with only 5 interactions over competitive baselines on the Caltech-UCSD Birds, CheXpert and OAI datasets.
更多查看译文
关键词
Interpretable Models,Model Interpretability,Machine Learning Interpretability,Change Detection,Ensemble Learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn