Tailoring Optical Excitation to Control Magnetic Skyrmion Nucleation

PHYSICAL REVIEW B(2022)

引用 3|浏览2
摘要
In ferromagnetic multilayers, a single laser pulse with a fluence above an optical nucleation threshold can create magnetic skyrmions, which are randomly distributed over the area of the laser spot. However, in order to study the dynamics of skyrmions and for their application in future data technology, a controllable localization of the skyrmion nucleation sites is crucial. Here, it is demonstrated that patterned reflective masks behind a thin magnetic film can be designed to locally tailor the optical excitation amplitudes reached, leading to spatially controlled skyrmion nucleation on the nanometer scale. Using x-ray microscopy, the influence of nanopatterned back-side aluminum masks on the optical excitation is studied in two sample geometries with varying layer sequence of substrate and magnetic Co/Pt multilayer. Surprisingly, the masks' effect on suppressing or enhancing skymion nucleation reverses when changing this sequence. Moreover, optical near-field enhancements additionally affect the spatial arrangement of the nucleated skyrmions. Simulations of the spatial modulation of the laser excitation, and the following heat transfer across the interfaces in the two sample geometries are employed to explain these observations. The results demonstrate a reliable approach to add nanometer-scale spatial control to optically induced magnetization processes on ultrafast timescales.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn