Locally Thinned, Core-Shell Nanowire-Integrated Multi-gate MoS2 Transistors for Active Control of Extendable Logic

ACS APPLIED MATERIALS & INTERFACES(2023)

引用 4|浏览10
摘要
Field-effect transistor (FET) devices with multi-gate coupled structures usually exhibit special electrical properties and are suitable for fabricating multifunctional devices. Among them, the 1D nanowire gate configuration has become a promising gate design to tailor 2D FET performances. However, due to possible short circuiting induced by nanowire contact and the high requirement for precision manipulation, the integration of multi-nanowires as gates in a single 2D electronic system remains a grand challenge. Herein, local laser--thinned multiple core-shell SiC@SiO2 nanowires are successfully integrated into MoS2 transistors as multi-gates for active control of extendable logic applications. Nanowire gates (NGs) locally enhance the carrier transportation, and the use of multiple NGs can achieve designed band structures to tune the performance of the device. For core-shell structures, a semiconducting core is used to introduce a gate bias, and the insulating shell provides protection against short circuiting between NGs, facilitating nanowire assembly. Furthermore, a global control gate is introduced to co-tune the overall electrical characteristics, while active control of logic devices and extendable inputs are achieved based on this model. This work proposes a novel nanowire multi-gate configuration, which provides possibilities for localized, precise control of band structures and the fabrication of highly integrated, multifunctional, and controllable nano-devices.
更多
查看译文
关键词
multi-gate configurations,nanowires with insulating shells,nanowire gate,femtosecond laser processing,local laser thinning,active control of logic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn