Sustainability of Regional Groundwater Quality in Response to Managed Aquifer Recharge

WATER RESOURCES RESEARCH(2023)

引用 4|浏览11
摘要
Growing demands on water supply worldwide have resulted in aquifer overdraft in many regions, especially in alluvial basins under intensive irrigation. This further leads to serious deterioration of groundwater quality. Managed aquifer recharge (MAR) has been shown to mitigate groundwater overdraft, but whether MAR can actually stabilize or reverse the ongoing declines in regional groundwater quality caused by non‐point sources has not been demonstrated. This study was intended to address the question by investigating impacts of different MAR strategies on regional groundwater quality. A geostatistical model was first used to characterize a heterogeneous alluvial aquifer system in a portion of the Tulare Lake Basin. Three‐dimensional numerical models were then employed to simulate groundwater flow and mass transport. Next, MAR strategies were applied in locations with different geological conditions or joint with different irrigation activities, and their performances were evaluated. Results demonstrate the potential of significant, long‐term benefits for regional groundwater quality by applying strategic, high‐intensity recharge operations on geologically favorable subregions. Siting MAR above the incised valley fill (IVF) deposit, a near‐surface paleochannel containing unusually coarse, high‐conductivity hydrofacies, leads to more extensive improvement in the groundwater quality in terms of salinity due to significant vertical flow and lateral outward flow from the IVF. Overall, decades would be required to alleviate groundwater quality concerns in the studied 189 km 2 region. The simulations indicate that the deep concentrations remain below the secondary maximum contaminant level as the solute mass migrates downward with the prominent contribution from the attenuation via dispersion and matrix diffusion.
更多
查看译文
关键词
managed aquifer recharge (MAR),aquifer heterogeneity,groundwater quality,irrigation,water management
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn