Vitamin D-vitamin D Receptor Alleviates Oxidative Stress in Ischemic Acute Kidney Injury Via Upregulating Glutathione Peroxidase 3
FASEB JOURNAL(2023)
摘要
Vitamin D receptor was previously reported to be protective in acute kidney injury (AKI) with the mechanism unclear, while the role of renal localized glutathione peroxidase 3 (GPX3) was not illustrated. The present study aims to investigate the role of GPX3 as well as its correlation with vitamin D-vitamin D receptor (VD-VDR) in ischemia-reperfusion (I/R)-induced renal oxidative stress injury. We showed that the expression of GPX3 and VDR were consistently decreased in renal tissues of I/R-related AKI patients and mice models. VDR agonist paricalcitol could reverse GPX3 expression and inhibit oxidative stress in I/R mice or hypoxia-reoxygenation (H/R) insulted HK-2 cells. VDR deficiency resulted in aggregated oxidative stress and severer renal injury accompanied by further decreased renal GPX3, while tubular-specific VDR overexpression remarkably reduced I/R-induced renal injury with recovered GPX3 in mice. Neither serum selenium nor selenoprotein P was affected by paricalcitol administration nor Vdr modification in vivo. In addition, inhibiting GPX3 abrogated the protective effects of VD-VDR in HK-2 cells, while GPX3 overexpression remarkably attenuated H/R-induced oxidative stress and apoptosis. Mechanistic probing revealed the GPX3 as a VDR transcriptional target. Our present work revealed that loss of renal GPX3 may be a hallmark that promotes renal oxidative stress injury and VD-VDR could protect against I/R-induced renal injury via inhibition of oxidative stress partly by trans-regulating GPX3. In addition, maintenance of renal GPX3 could be a therapeutic strategy for ischemic AKI.
更多查看译文
关键词
acute kidney injury,glutathione peroxidase 3,ischemia-reperfusion,oxidative stress,vitamin D,vitamin D receptor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn