A Business Intelligence Tool for Explaining Similarity

Model-Driven Organizational and Business Agility(2022)

引用 0|浏览31
摘要
Agile Business often requires to identify similar objects (firms, providers, end users, products) between an older business domain and a newer one. Data-driven tools for aggregating similar resources are nowadays often used in Business Intelligence applications, and a large majority of them involve Machine Learning techniques based on similarity metrics. However effective, the mathematics such tools are based on does not lend itself to human-readable explanations of their results, leaving a manager using them in a “take it as is”-or-not dilemma. To increase trust in such tools, we propose and implement a general method to explain the similarity of a given group of RDF resources. Our tool is based on the theory of Least Common Subsumers (LCS), and can be applied to every domain requiring the comparison of RDF resources, including business organizations. Given a set of RDF resources found to be similar by Data-driven tools, we first compute the LCS of the resources, which is a generic RDF resource describing the features shared by the group recursively—i.e., at any depth in feature paths. Subsequently, we translate the LCS in English common language. Being agnostic to the aggregation criteria, our implementation can be pipelined with every other aggregation tool. To prove this, we cascade an implementation of our method to (i) the comparison of contracting processes in Public Procurement (using TheyBuyForYou), and (ii) the comparison and clustering of drugs (using k-Means) in Drugbank. For both applications, we present a fairly readable description of the commonalities of the cluster given as input.
更多
查看译文
关键词
Explainable Artificial Intelligence (XAI), Resource Description Framework (RDF), Least Common Subsumer (LCS)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn