Circular RNA, Circular RARS, Promotes Aerobic Glycolysis of Non‐small‐cell Lung Cancer by Binding with LDHA
THORACIC CANCER(2023)
摘要
Purpose:Accumulating evidence has highlighted the critical roles of circular RNAs (circRNAs) in non-small-cell lung cancer (NSCLC). This study aims to unveil the roles of circRARS (circular RARS) (hsa_circ_0001551) in NSCLC. Methods:Quantitative real-time PCR was used to determine the expression of circRARS in NSCLC tissues and cells. Kaplan-Meier analysis was used to determine the prognostic value of circRARS expression. CCK8, transwell, and wound healing assays were used to assess the proliferation, invasion, and migration abilities of NSCLC cells. RNA pull-down, cell fraction, glucose consumption, lactate production, and lactate dehydrogenase activity assays were conducted to explore the potential mechanisms of circRARS in NSCLC. Results:circRARS is upregulated in NSCLC tissues and positively correlated with smoking status, lymph node metastasis, and higher tumor stages. NSCLC patients with high expression of circRARS have poor overall survival. Functional assays demonstrated that circRARS accelerated the proliferation, invasion, and migration of NSCLC cells in vitro. The cell fraction suggested that circRARS mainly accumulated in cytoplasm and the RNA pull-down assay showed lactate dehydrogenase (LDHA) could bind with circRARS. Furthermore, circRARS positively regulates LDHA activity and LDHA expression at the transcription level. Moreover, downregulated circRARS decreases glucose consumption and lactate production and compromises aerobic glycolysis in NSCLC cells. Finally, rescue assays showed circRARS could promote NSCLC cell proliferation by regulating LDHA activity. Conclusion:This study shows that circRARS can promote glycolysis and tumor progression in NSCLC by regulating LDHA.
更多查看译文
关键词
aerobic glycolysis,circRARS,LDHA,NSCLC,prognosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn