A Novel Intelligent System for Dynamic Observation of Cotton Verticillium Wilt.

PLANT PHENOMICS(2023)

引用 0|浏览43
摘要
Verticillium wilt is one of the most critical cotton diseases, which is widely distributed in cotton-producing countries. However, the conventional method of verticillium wilt investigation is still manual, which has the disadvantages of subjectivity and low efficiency. In this research, an intelligent vision-based system was proposed to dynamically observe cotton verticillium wilt with high accuracy and high throughput. Firstly, a 3-coordinate motion platform was designed with the movement range 6,100 mm × 950 mm × 500 mm, and a specific control unit was adopted to achieve accurate movement and automatic imaging. Secondly, the verticillium wilt recognition was established based on 6 deep learning models, in which the VarifocalNet (VFNet) model had the best performance with a mean average precision (mAP) of 0.932. Meanwhile, deformable convolution, deformable region of interest pooling, and soft non-maximum suppression optimization methods were adopted to improve VFNet, and the mAP of the VFNet-Improved model improved by 1.8%. The precision–recall curves showed that VFNet-Improved was superior to VFNet for each category and had a better improvement effect on the ill leaf category than fine leaf. The regression results showed that the system measurement based on VFNet-Improved achieved high consistency with manual measurements. Finally, the user software was designed based on VFNet-Improved, and the dynamic observation results proved that this system was able to accurately investigate cotton verticillium wilt and quantify the prevalence rate of different resistant varieties. In conclusion, this study has demonstrated a novel intelligent system for the dynamic observation of cotton verticillium wilt on the seedbed, which provides a feasible and effective tool for cotton breeding and disease resistance research.
更多
查看译文
关键词
Plant Disease Detection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn