Defect Detection Scheme of Pins for Aviation Connectors Based on Image Segmentation and Improved RESNET-50

INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS(2024)

引用 0|浏览0
摘要
In this paper, a new detection method of pin defects based on image segmentation and ResNe-50 is proposed, which realizes the defect detection of faulty pins in many aviation connectors. In this paper, a new dataset image segmentation method is used to segment many aviation connectors in a single image to generate a dataset, which reduces the tedious work of manually labeling the dataset. In the defect detection model, based on ResNet-50, a ResNet-B residual structure is introduced to reduce the loss of features during information extraction; a continuously differentiable CELU is used as the activation function to reduce the neuron death problem of ReLU; a new deformable convolution network (DCN v2) is introduced as the convolution kernel structure of the model to improve the recognition of aviation connectors with prominent geometric deformation pin recognition. The improved model achieved 97.2% and 94.4% accuracy for skewed and missing pins, respectively, in the experiments. The detection accuracy improved by 1.91% to 96.62% compared to the conventional ResNet-50. Compared with the traditional model, the improved model has better generalization ability.
更多
查看译文
关键词
Aviation connectors,image segmentation,deformable convolution,ResNet-B,pin defect
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn