Targeting Repetitive Laboratory Testing with Electronic Health Records-Embedded Predictive Decision Support: A Pre-Implementation Study
CLINICAL BIOCHEMISTRY(2023)
摘要
Introduction: Unnecessary laboratory testing contributes to patient morbidity and healthcare waste. Despite prior attempts at curbing such overutilization, there remains opportunity for improvement using novel data-driven approaches. This study presents the development and early evaluation of a clinical decision support tool that uses a predictive model to help providers reduce low-yield, repetitive laboratory testing in hospitalized patients. Methods: We developed an EHR-embedded SMART on FHIR application that utilizes a laboratory test result prediction model based on historical laboratory data. A combination of semi-structured physician interviews, usability testing, and quantitative analysis on retrospective laboratory data were used to inform the tool's development and evaluate its acceptability and potential clinical impact. Key results: Physicians identified culture and lack of awareness of repeat orders as key drivers for overuse of inpatient blood testing. Users expressed an openness to a lab prediction model and 13/15 physicians believed the tool would alter their ordering practices. The application received a median System Usability Scale score of 75, corresponding to the 75th percentile of software tools. On average, physicians desired a prediction certainty of 85% before discontinuing a routine recurring laboratory order and a higher certainty of 90% before being alerted. Simulation on historical lab data indicates that filtering based on accepted thresholds could have reduced similar to 22% of repeat chemistry panels. Conclusions: The use of a predictive algorithm as a means to calculate the utility of a diagnostic test is a promising paradigm for curbing laboratory test overutilization. An EHR-embedded clinical decision support tool employing such a model is a novel and acceptable intervention with the potential to reduce low-yield, repetitive laboratory testing.
更多查看译文
关键词
Clinical decision support,Healthcare utilization,Laboratory testing,Prediction algorithms,Laboratory information systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn