GPU-based Private Information Retrieval for On-Device Machine Learning Inference.
PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, ASPLOS 2024, VOL 1(2024)
摘要
On-device machine learning (ML) inference can enable the use of private user data on user devices without revealing them to remote servers. However, a pure on-device solution to private ML inference is impractical for many applications that rely on embedding tables that are too large to be stored on-device. In particular, recommendation models typically use multiple embedding tables each on the order of 1--10 GBs of data, making them impractical to store on-device. To overcome this barrier, we propose the use of private information retrieval (PIR) to efficiently and privately retrieve embeddings from servers without sharing any private information. As off-the-shelf PIR algorithms are usually too computationally intensive to directly use for latency-sensitive inference tasks, we 1) propose novel GPU-based acceleration of PIR, and 2) co-design PIR with the downstream ML application to obtain further speedup. Our GPU acceleration strategy improves system throughput by more than 20× over an optimized CPU PIR implementation, and our PIR-ML co-design provides an over 5× additional throughput improvement at fixed model quality. Together, for various on-device ML applications such as recommendation and language modeling, our system on a single V100 GPU can serve up to 100,000 queries per second---a > 100× throughput improvement over a CPU-based baseline---while maintaining model accuracy.
更多查看译文
关键词
privacy,security,cryptography,machine learning,GPU,performance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn