Deep Learning-Based Optical Coherence Tomography Image Analysis of Human Brain Cancer.
BIOMEDICAL OPTICS EXPRESS(2023)
摘要
Real-time intraoperative delineation of cancer and non-cancer brain tissues, especially in the eloquent cortex, is critical for thorough cancer resection, lengthening survival, and improving quality of life. Prior studies have established that thresholding optical attenuation values reveals cancer regions with high sensitivity and specificity. However, threshold of a single value disregards local information important to making more robust predictions. Hence, we propose deep convolutional neural networks (CNNs) trained on labeled OCT images and co-occurrence matrix features extracted from these images to synergize attenuation characteristics and texture features. Specifically, we adapt a deep ensemble model trained on 5,831 examples in a training dataset of 7 patients. We obtain 93.31% sensitivity and 97.04% specificity on a holdout set of 4 patients without the need for beam profile normalization using a reference phantom. The segmentation maps produced by parsing the OCT volume and tiling the outputs of our model are in excellent agreement with attenuation mapping-based methods. Our new approach for this important application has considerable implications for clinical translation.
更多查看译文
关键词
Optical Coherence Tomography,Tissue Optical Clearing,Deep Learning,Cancer Detection,In Vivo Imaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn