Microfluidics Assembly of Inhalable Liposomal Ciprofloxacin Characterised by an Innovative in Vitro Pulmonary Model
INTERNATIONAL JOURNAL OF PHARMACEUTICS(2023)
摘要
Respiratory tract infections (RTIs) are reported to be the leading cause of death worldwide. Delivery of liposomal antibiotic nano-systems via the inhalation route has drawn significant interest in RTIs treatment as it can directly target the site of infection and reduces the risk of systemic exposure and side effects. Moreover, this formulation system can improve pharmacokinetics and biodistribution and enhance the activity against intracellular pathogens. Microfluidics is an innovative manufacturing technology that can produce nanomedicines in a homogenous and scalable way. The objective of this study was to evaluate the antibiofilm efficacy of two liposomal ciprofloxacin formulations with different vesicle sizes manufactured by using a 3D-printed microfluidic chip. Each formulation was characterised in terms of size, polydispersity index, charge and encapsulation. Moreover, the aerosolisation characteristics of the liposomal formulations were investigated and compared with free ciprofloxacin solution using laser diffraction and cascade impaction methods. The in vitro drug release was tested using the dialysis bag method. Furthermore, the drug transport and drug release studies were conducted using the alveolar epithelial H441 cell line integrated next-generation impactor in vitro model. Finally, the biofilm eradication efficacy was evaluated using a dual-chamber microfluidic in vitro model. Results showed that both liposomal-loaded ciprofloxacin formulations and free ciprofloxacin solution had comparable aerosolisation characteristics and biofilm-killing efficacy. The liposomal ciprofloxacin formulation of smaller vesicle size showed significantly slower drug release in the dialysis bag technique compared to the free ciprofloxacin solution. Interestingly, liposomal ciprofloxacin formulations successfully controlled the release of the drug in the epithelial cell model and showed different drug transport profiles on H441 cell lines compared to the free ciprofloxacin solution, supporting the potential for inhaled liposomal ciprofloxacin to provide a promising treatment for respiratory infections.
更多查看译文
关键词
Ciprofloxacin,H441 cell line,Microfluidics,Liposomes,Nebulisation,Next-generation impactor,Antimicrobial efficacy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn