Contracting Skeletal Kinematic Embeddings for Anomaly Detection
CoRR(2023)
摘要
Detecting the anomaly of human behavior is paramount to timely recog-nizing endangering situations, such as street fights or elderly falls. However, anomaly detection is complex, since anomalous events are rare and because it is an open set recognition task, i.e., what is anomalous at inference has not been observed at training. We propose COSKAD, a novel model which en-codes skeletal human motion by an efficient graph convolutional network and learns to COntract SKeletal kinematic embeddings onto a latent hypersphere of minimum volume for Anomaly Detection. We propose and analyze three latent space designs for COSKAD: the commonly-adopted Euclidean, and the new spherical-radial and hyperbolic volumes. All three variants outperform the state-of-the-art, including video-based techniques, on the ShangaiTechCampus , the Avenue , and on the most recent UBnormal dataset, for which we con-tribute novel skeleton annotations and the selection of human-related videos. The source code and dataset will be released upon acceptance.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn