Cavity-enhanced Single Artificial Atoms in Silicon

NATURE COMMUNICATIONS(2024)

引用 2|浏览58
摘要
Artificial atoms in solids are leading candidates for quantum networks, scalable quantum computing, and sensing, as they combine long-lived spins with mobile and robust photonic qubits. The central requirements for the spin-photon interface at the heart of these systems are long spin coherence times and efficient spin-photon coupling at telecommunication wavelengths. Artificial atoms in silicon have a unique potential to combine the long coherence times of spins in silicon with telecommunication wavelength photons in the world's most advanced microelectronics and photonics platform. However, a current bottleneck is the naturally weak emission rate of artificial atoms. An open challenge is to enhance this interaction via coupling to an optical cavity. Here, we demonstrate cavity-enhanced single artificial atoms at telecommunication wavelengths in silicon. We optimize photonic crystal cavities via inverse design and show controllable cavity-coupling of single G-centers in the telecommunications O-band. Our results illustrate the potential to achieve a deterministic spin-photon interface in silicon at telecommunication wavelengths, paving the way for scalable quantum information processing.
更多
查看译文
关键词
Silicon Photonics,Microcavities
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn