ISG20L1 Acts As a Co-Activator of DAPK1 in the Activation of the P53-Dependent Cell Death Pathway
JOURNAL OF CELL SCIENCE(2023)
摘要
Our previous studies have revealed that GADD45α is a liable proapoptotic protein, which undergoes MDM2-dependent constitutive ubiquitylation and degradation in resting cancer cells. Under chemotherapeutic agent (such as arsenite, 5-Fu and VP-16) exposure, DAPK1 functions as a novel p53 (also known as TP53) kinase, which induces phosphorylation of p53 at Ser15 and transactivates the p53 target Ets-1, to synergistically repress IKKβ-dependent MDM2 stability, and ultimately removes the inhibitory effect of MDM2 on GADD45α, resulting in GADD45α accumulation and cell apoptosis. In the current study, we show that there is a strong induction of ISG20L1 (also known as AEN) expression in several cancer cell lines under exposure of arsenite and other chemotherapeutic agents. Surprisingly, although originally identified as a transcriptional target of p53, ISG20L1 induction was not controlled by p53. Instead, ISG20L1 functioned as upstream activator of p53 by interacting with DAPK1, and plays an essential role in promoting DAPK1-p53 complex formation and the subsequent activation of Ets-1/IKKβ/MDM2/GADD45α cascade. Therefore, our findings have revealed novel function of ISG20L1 in mediating cancer cell apoptosis induced by chemotherapeutic agents via modulating activation of the DAPK1- and p53-dependent cell death pathway.
更多查看译文
关键词
DAPK1,p53,Apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn