Interface Density Engineering on Heterogeneous Molybdenum Dichalcogenides Enabling Highly Efficient Hydrogen Evolution Catalysis and Sodium Ion Storage

SMALL(2023)

引用 3|浏览20
摘要
Constructing active heterointerfaces is powerful to enhance the electrochemical performances of transition metal dichalcogenides, but the interface density regulation remains a huge challenge. Herein, MoO2/MoS2 heterogeneous nanorods are encapsulated in nitrogen and sulfur co-doped carbon matrix (MoO2/MoS2@NSC) by controllable sulfidation. MoO2 and MoS2 are coupled intimately at atomic level, forming the MoO2/MoS2 heterointerfaces with different distribution density. Strong electronic interactions are triggered at these MoO2/MoS2 heterointerfaces for enhancing electron transfer. In alkaline media, the optimal material exhibits outstanding hydrogen evolution reaction (HER) performances that significantly surpass carbon-covered MoS2 nanorods counterpart (eta(10): 156 mV vs 232 mV) and most of the MoS2-based heterostructures reported recently. First-principles calculation deciphers that MoO2/MoS2 heterointerfaces greatly promote water dissociation and hydrogen atom adsorption via the O-Mo-S electronic bridges during HER process. Moreover, benefited from the high pseudocapacitance contribution, abundant "ion reservoir"-like channels, and low Na+ diffusion barrier appended by high-density MoO2/MoS2 heterointerfaces, the material delivers high specific capacity of 888 mAh g(-1), remarkable rate capability and cycling stability of 390 cycles at 0.1 A g(-1) as the anode of sodium ion battery. This work will undoubtedly light the way of interface density engineering for high-performance electrochemical energy conversion and storage systems.
更多
查看译文
关键词
controllable sulfidation,electrocatalytic hydrogen evolution,heterointerface density engineering,O-Mo-S electronic bridges,sodium ion storage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn