Intrinsic Theta Oscillation in the Attractor Network of Grid Cells
ISCIENCE(2023)
摘要
Both grid-like firing fields and theta oscillation are hallmarks of grid cells in the mammalian brain. While bump attractor dynamics have generally been recognized as the substrate for grid firing fields, how theta oscillation arises and interacts with persistent activity in a cortical circuit remains obscure. Here, we report that the theta oscillation intrinsically emerges in a continuous attractor network composed of principal neurons and interneurons. Periodic bump attractors and the theta rhythm stably coexist in both cell types due to the division of labor among interneurons via structured synaptic connectivity between principal cells and interneurons. The slow dynamics of NMDAR-mediated synaptic currents support the persistency of bump attractors and restrict the oscillation frequency in the theta band. The spikes of neurons within bump attractors are phase locked to a proxy of local field potential. The current work provides a network-level mechanism that orchestrates the bump attractor dynamics and theta rhythmicity.
更多查看译文
关键词
Cell,Neuroscience
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn