Deep Probabilistic Time Series Forecasting over Long Horizons

ICLR 2023(2023)

引用 0|浏览115
摘要
Recent advances in neural network architectures for time series have led to significant improvements on deterministic forecasting metrics like mean squared error. We show that for many common benchmark datasets with deterministic evaluation metrics, intrinsic stochasticity is so significant that simply predicting summary statistics of the inputs outperforms many state-of-the-art methods, despite these simple forecasters capturing essentially no information from the noisy signals in the dataset. We demonstrate that using a probabilistic framework and moving away from deterministic evaluation acts as a simple fix for this apparent misalignment between good performance and poor understanding. With simple and scalable approaches for uncertainty representation we can adapt state-of-the-art architectures for point prediction to be excellent probabilistic forecasters, outperforming complex probabilistic methods constructed from deep generative models (DGMs) on popular benchmarks. Finally, we demonstrate that our simple adaptations to point predictors yield reliable probabilistic forecasts on many problems of practical significance, namely large and highly stochastic datasets of climatological and economic data.
更多
查看译文
关键词
time series,neural networks,probabilistic forecasting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn