2S-Gatcn: Two-Stream Graph Attentional Convolutional Networks for Skeleton-Based Action Recognition
ELECTRONICS(2023)
摘要
As human actions can be characterized by the trajectories of skeleton joints, skeleton-based action recognition techniques have gained increasing attention in the field of intelligent recognition and behavior analysis. With the emergence of large datasets, graph convolutional network (GCN) approaches have been widely applied for skeleton-based action recognition and have achieved remarkable performances. In this paper, a novel GCN-based approach is proposed by introducing a convolutional block attention module (CBAM)-based graph attention block to compute the semantic correlations between any two vertices. By considering semantic correlations, our model can effectively identify the most discriminative vertex connections associated with specific actions, even when the two vertices are physically unconnected. Experimental results demonstrate that the proposed model is effective and outperforms existing methods.
更多查看译文
关键词
action recognition,GCN,connection strength,graph attention block,CBAM
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn