OO-dMVMT: A Deep Multi-view Multi-task Classification Framework for Real-time 3D Hand Gesture Classification and Segmentation.

2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)(2023)

引用 2|浏览52
摘要
Continuous mid-air hand gesture recognition based on captured hand pose streams is fundamental for human-computer interaction, particularly in AR / VR. However, many of the methods proposed to recognize heterogeneous hand gestures are tested only on the classification task, and the real-time low-latency gesture segmentation in a continuous stream is not well addressed in the literature. For this task, we propose the On-Off deep Multi-View Multi-Task paradigm (OO-dMVMT). The idea is to exploit multiple time-local views related to hand pose and movement to generate rich gesture descriptions, along with using heterogeneous tasks to achieve high accuracy. OO-dMVMT extends the classical MVMT paradigm, where all of the multiple tasks have to be active at each time, by allowing specific tasks to switch on/off depending on whether they can apply to the input. We show that OO-dMVMT defines the new SotA on continuous/online 3D skeleton-based gesture recognition in terms of gesture classification accuracy, segmentation accuracy, false positives, and decision latency while maintaining real-time operation.
更多
查看译文
关键词
3D skeleton-based gesture recognition,classical MVMT paradigm,gesture descriptions,gesture segmentation,heterogeneous hand gestures,human-computer interaction,mid-air hand gesture recognition,Multitask classification framework,on-off deep multiview multi-task paradigm,OO-dMVMT,realtime 3D hand gesture classification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn