HXPY: A High-Performance Data Processing Package for Financial Time-Series Data.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY(2023)

引用 0|浏览50
摘要
A tremendous amount of data has been generated by global financial markets everyday,and such time-series data needs to be analyzed in real time to explore its potential value.In recent years,we have witnessed the successful adoption of machine learning models on financial data,where the importance of accuracy and timeliness demands highly effective computing frameworks.However,traditional financial time-series data processing frameworks have shown perfor-mance degradation and adaptation issues,such as the outlier handling with stock suspension in Pandas and TA-Lib.In this paper,we propose HXPY,a high-performance data processing package with a C++/Python interface for financial time-series data.HXPY supports miscellaneous acceleration techniques such as the streaming algorithm,the vectorization instruction set,and memory optimization,together with various functions such as time window functions,group opera-tions,down-sampling operations,cross-section operations,row-wise or column-wise operations,shape transformations,and alignment functions.The results of benchmark and incremental analysis demonstrate the superior performance of HXPY compared with its counterparts.From MiBs to GiBs data,HXPY significantly outperforms other in-memory dataframe computing rivals even up to hundreds of times.
更多
查看译文
关键词
dataframe,time-series data,SIMD (single instruction multiple data),CUDA (Compute Unified Device Architecture)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn