Symbolic Regression on FPGAs for Fast Machine Learning Inference

26TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS, CHEP 2023(2024)

引用 0|浏览69
摘要
The high-energy physics community is investigating the potential of deploying machine-learning-based solutions on Field-Programmable Gate Arrays (FPGAs) to enhance physics sensitivity while still meeting data processing time constraints. In this contribution, we introduce a novel end-to-end procedure that utilizes a machine learning technique called symbolic regression (SR). It searches the equation space to discover algebraic relations approximating a dataset. We use PySR (a software to uncover these expressions based on an evolutionary algorithm) and extend the functionality of hls4ml (a package for machine learning inference in FPGAs) to support PySR-generated expressions for resource-constrained production environments. Deep learning models often optimize the top metric by pinning the network size because the vast hyperparameter space prevents an extensive search for neural architecture. Conversely, SR selects a set of models on the Pareto front, which allows for optimizing the performance-resource trade-off directly. By embedding symbolic forms, our implementation can dramatically reduce the computational resources needed to perform critical tasks. We validate our method on a physics benchmark: the multiclass classification of jets produced in simulated proton-proton collisions at the CERN Large Hadron Collider. We show that our approach can approximate a 3-layer neural network using an inference model that achieves up to a 13-fold decrease in execution time, down to 5 ns, while still preserving more than 90% approximation accuracy.
更多
查看译文
关键词
Machine Learning,Robust Learning,High-Performance Computing,Scientific Computing,Hyperparameter Optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn