Efficient Bioproduction of 3-Hydroxypropionic Acid from Methanol by a Synthetic Yeast Cell Factory
ACS SUSTAINABLE CHEMISTRY & ENGINEERING(2023)
摘要
Methanol is an ideal feedstock for bio-manufacturing chemicals without the dependence of sugars and the competition of arable lands. We here engineered an industrial yeast Pichia pastoris to efficiently produce 3-hydroxypropionic acid (3-HP) from sole methanol as a carbon source by using a malonyl-CoA-derived pathway. Optimizing the expression of malonyl-CoA reductase gene MCR from Chloroflexus aurantiacus and enhancing the supply of precursors and NADPH enabled 3-HP production of 1.5 g/L. To avoid the time-consuming genetic manipulation, metabolically transforming a free fatty acid (FFA)-overproducing strain toward 3-HP biosynthesis results in a 3-HP production of 1.9 g/L in a shake flask. Through further downregulation of methanol dissimilation, 3-HP production was improved to 2.2 g/L. Subsequent fed-batch cultivation in bioreactors achieved a remarkable 3-HP production of 48.2 g/L from minimal medium with a yield of 0.23 g/g methanol. Notably, this represents the highest reported 3-HP production from one-carbon (C1) feedstocks and is comparable to that from sugar in yeast. The high-level 3-HP production from methanol highlights the potential of P. pastoris as a workhorse for methanol biotransformation. Furthermore, the strategies presented in this study could be applied for production of other acetyl-CoA derivatives from methanol in P. pastoris.
更多查看译文
关键词
metabolic engineering,Pichia pastoris,methanol biorefinery,3-hydroxypropionic acid
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn