Vitamin D Receptor Attenuate Ischemia-Reperfusion Kidney Injury Via Inhibiting ATF4.
CELL DEATH DISCOVERY(2023)
摘要
Activating transcription factor 4 (ATF4) is one of the key effectors of endoplasmic reticulum stress (ERS), ATF4/CHOP pathway-mediated ERS plays an important role in the progression of acute kidney disease (AKI). We have previously reported that Vitamin D receptor (VDR) exert renoprotection in rodent AKI models. However, whether ATF4, as well as ERS, is involved in the protective effect of VDR in ischemia-reperfusion (I/R) induced AKI is unknown. Herein, we showed that VDR agonist paricalcitol and VDR overexpression alleviated I/R-induced renal injury and cells apoptosis with decreased ATF4 and attenuated ERS, while VDR deletion significantly resulted in further increased ATF4, more drastic ERS and renal injury in I/R mice models. In addition, paricalcitol remarkably reduced Tunicamycin (TM) induced ATF4 and ERS with attenuated renal injury, while VDR deletion aggravated the above changes in TM mice models. Moreover, overexpression of ATF4 partially abolished the effect of paricalcitol against TM-induced ERS and apoptosis, while inhibition of ATF4 enhanced the protective effect of paricalcitol. Bioinformatics analysis indicated potential VDR binding sites on ATF4 promotor sequence which were further confirmed by ChIP-qPCR and dual-luciferase reporter gene assay. In conclusion, VDR attenuated I/R-induced AKI by suppressing ERS partly via transcriptional regulation of ATF4.
更多查看译文
关键词
Stress signalling,Transcriptional regulatory elements,Life Sciences,general,Biochemistry,Cell Biology,Stem Cells,Apoptosis,Cell Cycle Analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn