Towards Robust Tampered Text Detection in Document Image: New Dataset and New Solution.

2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR(2023)

引用 4|浏览26
摘要
Recently, tampered text detection in document image has attracted increasingly attention due to its essential role on information security. However, detecting visually consistent tampered text in photographed document images is still a main challenge. In this paper, we propose a novel framework to capture more fine-grained clues in complex scenarios for tampered text detection, termed as Document Tampering Detector (DTD), which consists of a Frequency Perception Head (FPH) to compensate the deficiencies caused by the inconspicuous visual features, and a Multi-view Iterative Decoder (MID) for fully utilizing the information of features in different scales. In addition, we design a new training paradigm, termed as Curriculum Learning for Tampering Detection (CLTD), which can address the confusion during the training procedure and thus to improve the robustness for image compression and the ability to generalize. To further facilitate the tampered text detection in document images, we construct a large-scale document image dataset, termed as DocTamper, which contains 170,000 document images of various types. Experiments demonstrate that our proposed DTD outperforms previous state-of-the-art by 9.2%, 26.3% and 12.3% in terms of F-measure on the DocTamper testing set, and the cross-domain testing sets of DocTamper-FCD and DocTamper-SCD, respectively. Codes and dataset will be available at https://github.com/qcf-568/DocTamper.
更多
查看译文
关键词
Document analysis and understanding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn