A Framework for Fine-Grained Synchronization of Dependent GPU Kernels
2024 IEEE/ACM INTERNATIONAL SYMPOSIUM ON CODE GENERATION AND OPTIMIZATION, CGO(2024)
摘要
Machine Learning (ML) models execute several parallel computations including Generalized Matrix Multiplication, Convolution, Dropout, etc. These computations are commonly executed on Graphics Processing Units (GPUs), by dividing the computation into independent processing blocks, known as tiles. Since the number of tiles are usually higher than the execution units of a GPU, tiles are executed on all execution units in one or more waves. However, the number of tiles is not always a multiple of the number of execution units. Thus, tiles executed in the final wave can under-utilize the GPU. To address this issue, we present cuSync, a framework for synchronizing dependent kernels using a user-defined fine-grained synchronization policy to improve the GPU utilization. cuSync synchronizes tiles instead of kernels, which allows executing independent tiles of dependent kernels concurrently. We also present a compiler to generate diverse fine-grained synchronization policies based on dependencies between kernels. Our experiments found that synchronizing CUDA kernels using cuSync reduces the inference times of four popular ML models: MegatronLM GPT-3 by up to 15%, LLaMA by up to 14%, ResNet-38 by up to 22%, and VGG-19 by up to 16% over several batch sizes.
更多查看译文
关键词
CUDA,GPU,Generalized Matrix Multiplication,Convolution,Fine-Grained Synchronization,Machine Learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn